hsbox1.3で、ソーラーフロンティアホームサーバから発電量データ取得 遂に成功!? (fm_dataget.py)

hsbox でのソーラーフロンティアホームサーバーからのデータ収集の続きをしましょう。PROXY方式は諦めて、ホームサーバから直接取得する方法で再検討です。
結論から言うと、どうもうまくいっていそうです。最初に構成図です、前に描いた図と同じですが、ホームサーバから受け取るのではなく、ホームサーバに取りに行くイメージです。

検証環境

今回、データ取得に使用した環境は次の通りです。
フロンティアモニターホームサーバー
カーネルVer. 3.22
システムVer. 3.22
AD変換ボードVer. 2.00

hsBox
Version: 1.03.01.01, Build: 324

データ取得実装例(/home/hsbox/pyd/fm_dataget.py)

フロンティアモニターホームサーバーのバージョンによってデータ取得方法に違いがあります。参考にしてみてください

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import requests
import pandas as pd
import os
import json
import logging
from datetime import datetime
from pathlib import Path
import platform

# ===== 設定 =====
URL = "http://<★フロンティアモニターホームサーバーIP>/getEpData.cgi"
if platform.system() == "Windows":
NAS_DIR = Path(r"\\<★NAS IP>\share\PowerData")
else:
NAS_DIR = Path("/mnt/nas/PowerData") ★

NAS_DIR.mkdir(parents=True, exist_ok=True)

# ===== ログ設定 =====
today = datetime.now().strftime("%Y%m%d")
logfile = NAS_DIR / f"powerD_{today}.log"

logging.basicConfig(
filename=str(logfile),
level=logging.INFO,
format='%(asctime)s %(levelname)s %(message)s',
encoding='utf-8'
)

# ===== データ取得 =====
try:
response = requests.post(URL, data={"ep_units": "KW"}, timeout=5)
response.raise_for_status()
raw_data = response.text.strip()
except Exception as e:
logging.error(f"データ取得エラー: {e}")
print(f"データ取得エラー: {e}")
exit(1)

# ===== データ整形 =====
values = raw_data.split('|')

now = datetime.now()
data_dict = {
"timestamp": now,
"value1": values[0],
"value2": values[1],
"value3": values[2],
"value4": values[3],
"value5": values[4],
"value6": values[5],
"value7": values[6],
"value8": values[7] if len(values) > 7 else None,
"value9": values[8] if len(values) > 8 else None,
"value10": values[9] if len(values) > 9 else None,
"value11": values[10] if len(values) > 10 else None,
}

df = pd.DataFrame([data_dict]) # ← 1行 DataFrame

# ===== daily Parquet 追記 =====
daily_file = NAS_DIR / f"power_{today}.parquet"

try:
if daily_file.exists():
df_existing = pd.read_parquet(daily_file)
df = pd.concat([df_existing, df], ignore_index=True)

df.to_parquet(daily_file, index=False)
print(f"{daily_file} にデータを保存しました。")

# JSON ログ用に datetime を文字列化
log_dict = data_dict.copy()
log_dict["timestamp"] = log_dict["timestamp"].isoformat()
logging.info(f"データ保存: {json.dumps(log_dict, ensure_ascii=False)}")

except Exception as e:
logging.error(f"Parquet 保存エラー: {e}")
print(f"Parquet 保存エラー: {e}")

★印の箇所は、環境に合わせて、書き換えてください。
NAS設定はこちらのページを参考してください

cron設定

*/10 * * * *  /usr/bin/python3 /home/hsbox/pyd/fm_dataget.py

CRON設定で、10分おきに実行するように設定します。
CRON設定の方法は、hsbox本家サイトのページを参考にしてください。

このような感じでデータを取得できました


読み込み完了! → 143 行 × 12 列
timestamp value1 value2 value3 value4 value5 value6 value7 value8 value9 value10 value11
0 2025-12-01 00:00:03.338238 0.00 1.15 0.00 6.39 99.59 6.64 99.35 --/-- --:-- -.-- -.-- --/-- --:--
1 2025-12-01 00:10:03.199163 0.00 1.84 0.00 11.67 99.55 8.01 99.48 --/-- --:-- -.-- -.-- --/-- --:--
2 2025-12-01 00:20:03.231549 0.00 1.19 0.00 5.79 100.05 7.47 99.64 --/-- --:-- -.-- -.-- --/-- --:--
3 2025-12-01 00:30:02.432434 0.00 1.66 0.00 10.68 99.80 7.15 99.72 --/-- --:-- -.-- -.-- --/-- --:--
4 2025-12-01 00:40:03.512127 0.00 1.12 0.00 5.50 100.37 7.18 99.92 --/-- --:-- -.-- -.-- --/-- --:--
5 2025-12-01 00:50:02.524990 0.00 1.66 0.00 10.88 99.81 7.06 99.78 --/-- --:-- -.-- -.-- --/-- --:--
6 2025-12-01 01:00:03.315994 0.00 1.67 0.00 11.06 100.06 7.03 100.07 --/-- --:-- -.-- -.-- --/-- --:--
7 2025-12-01 01:10:02.494529 0.00 1.13 0.00 5.94 100.36 6.77 100.07 --/-- --:-- -.-- -.-- --/-- --:--
8 2025-12-01 01:20:03.026167 0.00 1.08 0.00 5.49 100.05 6.85 99.70 --/-- --:-- -.-- -.-- --/-- --:--
9 2025-12-01 01:30:03.163444 0.00 1.03 0.00 5.21 100.12 6.67 99.77 --/-- --:-- -.-- -.-- --/-- --:--
10 2025-12-01 01:40:02.385593 0.00 0.99 0.00 5.46 100.18 6.18 99.92 --/-- --:-- -.-- -.-- --/-- --:--
11 2025-12-01 01:50:03.190017 0.00 0.91 0.00 5.44 100.25 5.43 100.11 --/-- --:-- -.-- -.-- --/-- --:--

それぞれの項目のデータの意味は次のようになっているようです。

保存されたデータを確認

とりあえず一部のみです。

発電量のデータです。 多分取れているようです。2週間ほど並行してそらーフロンティアに上がっているデータと一致しているか、詳細確認をしてみます。

関連記事

本番、仕切り直し。(proxy設定 httpからhttpsに変換、 ポストデータ取得を検証)この方法は断念…   

「フロンティアモニターホームサーバー」のプロキシ設定を変更して、プロキシ経由でのデータ送信を検証してみます。hsBoxのIPとプロキシのポート番号8080を設定しました。すると、フロンティアモニター – ホームエネルギーモニタリングサービス – https://www.frontier-monitor.com/persite/top へのデータ反映が止まりました。当然過去分は見えますが、プロキシ設定変更後のデータが反映されません。 先のポストデータの取得のスクリプトでは、データが取れないどころか、「フロンティアモニターホームサーバー」から何か届いているのかさえも確認できません。スプリプトを改造してスタブ実装で200応答するように改造しましたが、コネクションまでは確認でき接続先サーバーを記録できることまではできましたが、TLS接続してくるのを疑似CAで応答できなさそうであることを確認しました。

solar
solar

PROXY方式についての結論

ユーザー名、パスワードを設定してもhttpsで接続し、httpで接続してくることはない。疑似的接続させることもほぼ不可能である。
 ということで、PROXY方式での情報採取はあきらめました。


再び、内部APIの調査、CGIでデータを採取

次回は、内部CGIでデータをとれるかを検証してみます。 どうもこっちが本命になりそう。


関連記事

さて本番だ、切り替えてみよう。(proxy設定 httpからhttpsに変換、 ポストデータ取得を検証)あと1歩に見えたが…

「フロンティアモニターホームサーバー」のプロキシ設定を変更して、プロキシ経由でのデータ送信を検証してみます。hsBoxのIPとプロキシのポート番号8080を設定しました。すると、フロンティアモニター – ホームエネルギーモニタリングサービス – https://www.frontier-monitor.com/persite/top へのデータ反映が止まりました。当然過去分は見えますが、プロキシ設定変更後のデータが反映されません。 先のポストデータの取得のスクリプトでは、データが取れないどころか、「フロンティアモニターホームサーバー」から何か届いているのかさえも確認できません。横から、テスト用のポストをするとデータは記録されるので、構築した環境は動いているようです。

今回の結果を先に書くと、www.frontier-monitor.comの仕様の古さのために、当初の第一階目のゴールにはたどり着けないということが判明した。そして、いきなり最終ゴールにむけた実装が必要ということがわかった。調査結果を以下に書く。ゴールだけを見たいという人はこの記事は読み飛ばしてもらって構わない。

再びデバック開始

よく見たら、ジャーナルにたくさん「フロンティアモニターホームサーバー」接続記録が出ていました。

journalctl -u fm-mitmproxy.service -f


11月 29 17:11:53 hsbox mitmdump[47809]: [17:10:04.599][192.168.x.xx:57372] server connect www.frontier-monitor.com:443 (150.31.252.104:443)
11月 29 17:11:53 hsbox mitmdump[47809]: [17:10:05.235][192.168.x.xx:57372] Client TLS handshake failed. Client and mitmproxy cannot agree on a TLS version to use. You may need to adjust mitmproxy's tls_version_client_min option.
11月 29 17:11:53 hsbox mitmdump[47809]: [17:10:05.240][192.168.x.xx:57372] client disconnect
11月 29 17:11:53 hsbox mitmdump[47809]: [17:10:05.245][192.168.x.xx:57372] server disconnect www.frontier-monitor.com:443 (150.31.252.104:443)
11月 29 17:11:53 hsbox mitmdump[47809]: [17:10:11.362][192.168.x.xx:43760] client connect
11月 29 17:11:53 hsbox mitmdump[47809]: [17:10:11.469][192.168.x.xx:43760] server connect www.frontier-monitor.com:443 (150.31.252.104:443)
11月 29 17:11:53 hsbox mitmdump[47809]: [17:10:12.019][192.168.x.xx:43760] Client TLS handshake failed. Client and mitmproxy cannot agree on a TLS version to use. You may need to adjust mitmproxy's tls_version_client_min option.
11月 29 17:11:53 hsbox mitmdump[47809]: [17:10:12.023][192.168.x.xx:43760] client disconnect
11月 29 17:11:53 hsbox mitmdump[47809]: [17:10:12.028][192.168.x.xx:43760] server disconnect www.frontier-monitor.com:443 (150.31.252.104:443)
11月 29 17:11:53 hsbox mitmdump[47809]: [17:10:18.092][192.168.x.xx:40724] client connect
11月 29 17:11:53 hsbox mitmdump[47809]: [17:10:18.143][192.168.x.xx:40724] server connect www.frontier-monitor.com:443 (150.31.252.104:443)
11月 29 17:11:53 hsbox mitmdump[47809]: [17:10:18.670][192.168.x.xx:40724] Client TLS handshake failed. Client and mitmproxy cannot agree on a TLS version to use. You may need to adjust mitmproxy's tls_version_client_min option.
11月 29

「Client TLS handshake failed. Client and mitmproxy cannot agree on a TLS version to use. You may need to adjust」このログが大量に出ているが、これが問題だったようだ。 TLS1.0に下げるように要求されている。 hsBoxでも設定で下げれないことはないが、外部公開している入り口が怪しくなるので無理にTLS1.0にさげないことにした。

太陽光機器(192.168.*.**)  
      ↓ CONNECT www.frontier-monitor.com:443 HTTP/1.1    プロキシ宛
mitmproxy(192.168.*.*:8080) ←ここで TLS 開始(クライアント側 TLS)  
      ↓ TLS ハンドシェイク開始  
      × 失敗 → Client TLS handshake failed  
      (mitmproxy → 150.31.252.104:443 にはまだ接続すらしていない)


ということで、データのキャプチャにも失敗し、プロキシ経由でのサーバへのアップロードもできていない。 プロキシ設定してから、 www.frontier-monitor.comへのデータアップロードも止まったままである。
  この記事での成果は、「フロンティアモニターホームサーバー」の送信先がwww.frontier-monitor.comであると確認できたことだ。

一旦、切り戻しして、仕切り直しましょう。そして、最終型にむけて再検討します。


関連記事

proxy設定のその2 httpからhttpsに変換、 ポストデータ取得を検証

hsbox の proxy実装の続きをしましょう。 httpは通りました https対応に挑戦です。
最初に検証方法を確認しておきましょう。 httpサービスをしていないhttpsのみのサイトを探しましょう そのサイトを使って、送信データを取得できるか検証しましょう。

確認方法の検討

$ curl -I http://github.com
HTTP/1.1 301 Moved Permanently
Content-Length: 0
Location: https://github.com/


$ curl -I https://github.com
HTTP/2 200
date: Fri, 28 Nov 2025 02:58:12 GMT
content-type: text/html; charset=utf-8
vary: X-PJAX, X-PJAX-Container, Turbo-Visit, Turbo-Frame, X-Requested-With, Accept-Language,Accept-Encoding, Accept, X-Requested-With
content-language: en-US
etag: W/"06826aee56dafc29be870ab3e992ec77"
cache-control: max-age=0, private, must-revalidate
strict-transport-security: max-age=31536000; includeSubdomains; preload
---以下省略

guithub.comのトップでhttpsへのプロキシが効くが確認することにします。

最初の状態でのProxy動作を確認してみます

$ curl -x http://192.168.2.45:8080 http://github.com

何も応答がありません。
まだ、Proxyが自動的にhttpsに変換していないようです。

プロキシをとおしてプロキシでポストデータを取得するのが目的です。 この場合、POSTはhttpsではなくhttpで送られる必要があるでしょう。そして、プロキシでhttpsに変換する。 そのような使い方をしたいので、 mitmproxy の 設定方法を変更します。

 mitmproxy 用解析・保存スクリプトを更新配置(仮2)

■/home/hsbox/pyd/fm_capture.py  を更新配置  (内容は以下)

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# File: ~/fm_capture.py

import json
import os
from datetime import datetime
from mitmproxy import http
from mitmproxy import ctx

DATA_DIR = "/home/hsbox/fm_data" # ← 自分のホームに合わせて変更
os.makedirs(DATA_DIR, exist_ok=True)

# fm_capture.py の先頭に追加
force_https_domains = {
"www.frontier-monitor.com",
"github.com",
# ここに対象ドメインを全部書く(または全部強制したいなら条件を緩く)
}

def request(flow):
host = flow.request.pretty_host
if host in force_https_domains or host.endswith(".example.com"):
if flow.request.scheme == "http":
flow.request.scheme = "https"
flow.request.port = 443

def response(flow: http.HTTPFlow):
# フロンティアモニターの送信先だけを対象にする
if "frontier-monitor.com" not in flow.request.pretty_host:
return

if flow.request.path.startswith("/upload/data.php"): # 実際のURLに合わせて調整可
try:
# POSTされたJSONを取得
raw = flow.request.get_text()
data = json.loads(raw)

# タイムスタンプを付与(モニターの時刻を優先)
timestamp = data.get("timestamp", datetime.now().isoformat())

# 1. 生JSONを保存(デバッグ用)
raw_file = f"{DATA_DIR}/raw_{timestamp.replace(':', '-')}.json"
with open(raw_file, "w") as f:
f.write(raw)

# 2. 最新データを上書き保存
latest_file = f"{DATA_DIR}/latest.json"
with open(latest_file, "w") as f:
json.dump(data, f, indent=2)

# 3. SQLiteに挿入(初回はテーブル自動作成)
import sqlite3
db_path = f"{DATA_DIR}/fm_data.db"
conn = sqlite3.connect(db_path)
cur = conn.cursor()
cur.execute("""
CREATE TABLE IF NOT EXISTS power (
ts TEXT PRIMARY KEY,
generation INTEGER,
consumption INTEGER,
grid_buy INTEGER,
grid_sell INTEGER,
temperature REAL,
status INTEGER
)
""")
cur.execute("""
INSERT OR REPLACE INTO power VALUES (?, ?, ?, ?, ?, ?, ?)
""", (
timestamp,
data.get("generation"),
data.get("consumption"),
data.get("grid_buy"),
data.get("grid_sell"),
data.get("temperature"),
data.get("status")
))
conn.commit()
conn.close()

ctx.log.info(f"[FM] データ保存成功 → {timestamp}")
except Exception as e:
ctx.log.error(f"[FM] エラー: {e}")

systemd サービスファイルの更新

[Unit]
Description=Frontier Monitor Transparent Proxy
After=network.target
Wants=network.target

[Service]
Type=simple
User=hsbox
Environment="PATH=/home/hsbox/.local/bin:/usr/local/bin:/usr/bin:/bin"
ExecStart=/home/hsbox/.local/bin/mitmdump --mode regular --listen-host 0.0.0.0 --listen-port 8080 --set upstream_cert=false --showhost --proxyauth ユーザー名:パスワード@ --script /home/hsbox/pyd/fm_capture.py --quiet
Restart=always
RestartSec=5

[Install]
WantedBy=multi-user.target

ユーザー名とパスワードを設定してください。 使用しない場合、”–proxyauth”の設定は不要です。
上の設定をしたら、設定反映と起動、起動確認を行います。

動作確認

■curlで、 動作検証します。
curl -x http://<プロキシが動作するhsboxのIP>:8080 http://github.com/

実行結果例:
curl -x http://192.168.1.10:8080 http://github.com








<!DOCTYPE html>
<html
lang="en"
data-color-mode="dark" data-dark-theme="dark"
data-color-mode="light" data-light-theme="light" data-dark-theme="dark"
data-a11y-animated-images="system" data-a11y-link-underlines="true"

>




<head>
<meta charset="utf-8">
<link rel="dns-prefetch" href="https://github.githubassets.com">
<link rel="dns-prefetch" href="https://avatars.githubusercontent.com">
<link rel="dns-prefetch" href="https://github-cloud.s3.amazonaws.com">
<link rel="dns-prefetch" href="https://user-images.githubusercontent.com/">
<link rel="preconnect" href="https://github.githubassets.com" crossorigin>
<link rel="preconnect" href="https://avatars.githubusercontent.com">


<link crossorigin="anonymous" rel="preload" as="script" href="https://github.githubassets.com/assets/global-banner-disable-54e442fb573b.js" />

<link rel="preload" href="https://github.githubassets.com/assets/mona-sans-14595085164a.woff2" as="font" type="font/woff2" crossorigin>



※これで、proxyで、httpをhttpsに変換してアクセスできていそうです。

NAS設定の修正

11月 28 23:03:07 hsbox systemd[1]: Started Frontier Monitor Transparent Proxy.
11月 28 23:03:45 hsbox mitmproxy[1050039]: POST CAPTURE FAILED: [Errno 13] Permission denied: ‘/mnt/nas/solar_data/capture_20251128.log’

NASの書き込み権限がないため書き込めません、mitmproxyは、hsbox権限で起動しているので、権限を777に設定します。

しかし、smbマウントしていると、chmodでは、権限を設定できません。NAS側のGUI等で、ログインユーザの権限等でフルアクセスできるように設定しておきます。
また、暫定対処ですが、起動時に自動マウントするように以下のマウントコマンドを仕込んでおきました。※事前に手動実行で操作確認しておいてください

# mitmproxy 用 NAS マウント
mount -t cifs //<NASのIP>/share /mnt/<マウントポイント> -o username=user,password=pass,vers=3.0,iocharset=utf8,uid=1000,gid=1000,nounix,cache=none,nolease && logger "NAS mounted for mitmproxy by startup script"

 mitmproxy 用解析・保存スクリプトを更新配置(仮3)

キャプチャデータをローカルおよびNASに保存するスプリプとに更新します。

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import json
import os
from datetime import datetime
from mitmproxy import http
from urllib.parse import urlencode

LOG_DIR = "/home/hsbox/fm_data" # まずローカルで確認
#LOG_DIR = "/mnt/nas/solar_data"

os.makedirs(LOG_DIR, exist_ok=True, mode=0o777)

def request(flow):
host = flow.request.pretty_host
if host in {"www.frontier-monitor.com", "github.com"}:
if flow.request.scheme == "http":
flow.request.scheme = "https"
flow.request.port = 443

def response(flow: http.HTTPFlow):
# POSTじゃなければ完全スルー(無駄な書き込みゼロ)
#if flow.request.method != "POST":
# return

now = datetime.now().strftime("%Y%m%d")
logfile = f"{LOG_DIR}/capture_{now}.log"

post_data = ""
if flow.request.urlencoded_form:
post_data = urlencode(flow.request.urlencoded_form)
elif flow.request.multipart_form:
post_data = urlencode(flow.request.multipart_form)
elif flow.request.text:
post_data = flow.request.text

# 空のPOSTは記録しない(必要なら残す)
if not post_data.strip():
return

entry = {
"ts": datetime.now().isoformat(),
"host": flow.request.pretty_host,
"url": flow.request.pretty_url,
"post": post_data
}

try:
with open(logfile, "a", encoding="utf-8", buffering=1) as f:
f.write(json.dumps(entry, ensure_ascii=False) + "\n")
f.flush()
os.fsync(f.fileno())
except Exception as e:
os.system(f'logger -t mitmproxy "POST CAPTURE FAILED: {e}"')

手動でポストをシミュレーションして動作確認

httpsのサイトに手動でポストしてみたデータを保存できるか検証します

~$ curl -x http://<hsBoxのIP>:8080 --insecure -X POST -d "test=2111
1&name=フロンティア
" http://github.com

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-type" content="text/html; charset=utf-8">
<meta http-equiv="Content-Security-Policy" content="default-src 'none'; base-uri 'self'; connect-src 'self'; form-action 'self'; img-src 'self' data:; script-src 'self'; style-src 'unsafe-inline'">
<meta content="origin" name="referrer">
<title>Page not found &middot; GitHub</title>
<style type="text/css" media="screen">

保存されたデータを確認

{“ts”: “2025-11-29T10:13:24.269169”, “host”: “github.com”, “url”: “https://github.com/”, “post”: “test=11111&name=%C3%A3%C2%83%C2%95%C3%A3%C2%83%C2%AD%C3%A3%C2%83%C2%B3%C3%A3%C2%83%C2%86%C3%A3%C2%82%C2%A3%C3%A3%C2%82%C2%A2”}
{“ts”: “2025-11-29T10:52:06.845328”, “host”: “github.com”, “url”: “https://github.com/”, “post”: “test=21111&name=%C3%A3%C2%83%C2%95%C3%A3%C2%83%C2%AD%C3%A3%C2%83%C2%B3%C3%A3%C2%83%C2%86%C3%A3%C2%82%C2%A3%C3%A3%C2%82%C2%A2“}

1回のポストで1行追加されました。

ポストしたデータが丸ごと入っていることを確認できました。
これでキャプチャ成功です。 
NASへの保存も成功です。

ハードルが複数あるので、着実に1つづつクリアしていくのが、近道でしょう。

・–quiet にしないとサービス起動できない
・サービス起動は通常root相当だが、mitmproxyの起動ユーザはrootではうまく動かない
・書き込みタイミングの課題
・NASの書き込み権限
・hsBox独特?の自動マウントの手法

簡単にまとめると権限問題とタイミング問題ですね。開発者あるあるですね。。

関連記事

hsbox1.3上にproxyを構築する手順

太陽光発電のモニタリングサービスが終了するため、データ取得を検討中です。このデータ取得のために、proxyを構築します。 誰でも簡単に導入できるようにするためにここでは、hsbox(無料版:freebox)上に構築してみます。

どのような構成にするのかは、過去の記事を参考にしてください。ここでは、hsboxに構築する手順に特化して記載します。

0.前準備

hsboxを構築する手順はここでは省きます。本家サイトの記事(リンク先)か、Vectorサイトのドキュメント入りアーカイブを参照してください。
有償版は、GUIから操作できるなど操作性が上がりますが、ここでは無償版でも使える機能をベースに記載します。

1.プロキシのインストール

hsbox1.3は、python3環境を構築済みなので、プロキシのインストールからはじめます。

■1. hsboxに、sshでログインします。  *参考:本家サイト
  ホームディレクトリ /home/hsbox に移動。

■2. mitmproxy をインストール
pip3 install --user mitmproxy

■3. 実行パスを通す
echo 'export PATH="$HOME/.local/bin:$PATH"' >> ~/.bashrc
source ~/.bashrc

■4. スクリプト等配置用のディレクトリ作成
mkdir /home/hsbox/pyd

2. mitmproxy 用解析・保存スクリプトを配置(仮版)

■/home/hsbox/pyd/fm_capture.py  を配置  (内容は以下)

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# File: ~/fm_capture.py

import json
import os
from datetime import datetime
from mitmproxy import http
from mitmproxy import ctx

DATA_DIR = "/home/hsbox/fm_data"   # ← 自分のホームに合わせて変更
os.makedirs(DATA_DIR, exist_ok=True)

def response(flow: http.HTTPFlow):
    # フロンティアモニターの送信先だけを対象にする
    if "frontier-monitor.com" not in flow.request.pretty_host:
        return

    if flow.request.path.startswith("/upload/data.php"):  # 実際のURLに合わせて調整可
        try:
            # POSTされたJSONを取得
            raw = flow.request.get_text()
            data = json.loads(raw)

            # タイムスタンプを付与(モニターの時刻を優先)
            timestamp = data.get("timestamp", datetime.now().isoformat())

            # 1. 生JSONを保存(デバッグ用)
            raw_file = f"{DATA_DIR}/raw_{timestamp.replace(':', '-')}.json"
            with open(raw_file, "w") as f:
                f.write(raw)

            # 2. 最新データを上書き保存
            latest_file = f"{DATA_DIR}/latest.json"
            with open(latest_file, "w") as f:
                json.dump(data, f, indent=2)

            # 3. SQLiteに挿入(初回はテーブル自動作成)
            import sqlite3
            db_path = f"{DATA_DIR}/fm_data.db"
            conn = sqlite3.connect(db_path)
            cur = conn.cursor()
            cur.execute("""
                CREATE TABLE IF NOT EXISTS power (
                    ts TEXT PRIMARY KEY,
                    generation INTEGER,
                    consumption INTEGER,
                    grid_buy INTEGER,
                    grid_sell INTEGER,
                    temperature REAL,
                    status INTEGER
                )
            """)
            cur.execute("""
                INSERT OR REPLACE INTO power VALUES (?, ?, ?, ?, ?, ?, ?)
            """, (
                timestamp,
                data.get("generation"),
                data.get("consumption"),
                data.get("grid_buy"),
                data.get("grid_sell"),
                data.get("temperature"),
                data.get("status")
            ))
            conn.commit()
            conn.close()

            ctx.log.info(f"[FM] データ保存成功 → {timestamp}")
        except Exception as e:
            ctx.log.error(f"[FM] エラー: {e}")

3. systemd サービスファイル

[Unit]
Description=Frontier Monitor Transparent Proxy
After=network.target
Wants=network.target

[Service]
Type=simple
User=hsbox
Environment="PATH=/home/hsbox/.local/bin:/usr/local/bin:/usr/bin:/bin"
ExecStart=/home/hsbox/.local/bin/mitmdump --mode regular --listen-host 0.0.0.0 --listen-port 8080 --script /home/hsbox/pyd/fm_capture.py --quiet
Restart=always
RestartSec=5

[Install]
WantedBy=multi-user.target

※ファイルの書き込みはいろいろありますが、ルート権限で上書きcat するのか簡単でしょう。

4. 設定反映と起動

# ファイルを反映
sudo systemctl daemon-reload

# 自動起動設定+今すぐ起動
sudo systemctl enable fm-mitmproxy.service
sudo systemctl start fm-mitmproxy.service

# 状態確認
sudo systemctl status fm-mitmproxy.service
journalctl -u fm-mitmproxy.service -f # リアルタイムログ

参考

statusでの確認で、起動していれば次のように”active (running)”が表示されます

root@hsbox:~# sudo systemctl status fm-mitmproxy.service
● fm-mitmproxy.service - Frontier Monitor Transparent Proxy
Loaded: loaded (/etc/systemd/system/fm-mitmproxy.service; enabled; vendor >
Active: active (running) since Sun 2025-11-23 15:29:08 JST; 1 day 7h ago
Main PID: 135951 (mitmdump)
Tasks: 2 (limit: 4378)
Memory: 46.0M
CPU: 1min 2.732s
CGroup: /system.slice/fm-mitmproxy.service
mq135951 /usr/bin/python3 /home/hsbox/.local/bin/mitmdump --mode r>

11月 23 15:29:08 hsbox systemd[1]: Started Frontier Monitor Transparent Proxy.

動作確認

■curlで、 動作検証します。
curl -x http://<プロキシが動作するhsboxのIP>:8080 http://mic.or.jp/

例:
curl -x http://192.168.1.10:8080 http://mic.or.jp/

※とりあえず、確認できるのはhttpのみ、 この設定だけではhttpsサイトへのproxy利用ができません。 httpsは次のステップです。

関連記事

ルールベースチェックでのAI利用

以下は、それぞれのページについてGPTとGrokで同じルールを使って判定した結果です。 GPT、Grokともにルールに点数をつけるルールをいれての確認で、追加で明示的に点数をつけるように指示しましたが、どちらも点数をつけるルールを理解できていませんでした。さらにGPTは、点数をつけるルールを見逃している点を指摘しても、勝手な採点ルールで点数を付けました。再度やり直して得られた結果が次です。

URLGPT採点Grok採点
https://president.jp/articles/-/10317873100
https://www.zakzak.co.jp/article/20251120-NRES442BJ5C6FMPTSOEWOPZCOU/4/77100
https://x.com/TrumpPostsJA80100
https://mic.or.jp/info/2025/11/21/web-4/– *1100

*1:GPTは該当ページを参照できず、採点できませんでした。

GPTは、厳しめの判定をする傾向があるようです。 アクセスできないケースが頻繁に発生するため、安定運用は難しいかもしれません。 厳しめに見るのは、活用シーンによっては有難いのですが、別のポリシーも厳しくアクセスができないという問題も発生してしまっています。

どう使うかは、利用者次第ですが、最初に示したように、チェックごとに結果が変わるので、作成したルールを期待通りに活用できているかを何からの方法で定期的にチェックしたほうが良いかもしれません。 チェックを行うごとにチェックの正確さが変わっていく恐れがあります。採用試験のように試験官の個人差の影響を受けないつもりでAI導入したのに、実際には同じ基準では運用できていなかったというような問題が発生しかねません。結局は、AI活用は利用者責任で利用していかなければならないのでしょう。

 しかし、自動運転での活用では誰の責任になるのか、どうなるのかこのような状況では厳しいでしょう。現状はオーナー(購入者)が責任を取る必要があるパターンがあるとされています。 問題がある場合は起動できないようにするなどの仕組みが必要でしょう。実際に購入する前に想定外の責任を背負わされないように確認しておいたほうが良いでしょう。早い段階で、このようなリスクを誰がとるかの取り決めが明確になり、利用者や購入者(お金を払う側)が責任を負わされるようなケースがなくならないと、AIバブルがはじけてしまうかもしれません。

関連記事

https://chatgpt.com

https://grok.com

Pythonで Webクローリング+データ解析 -「今、本当に即満室になる賃貸物件のスペック」

~Python + Grokで900件分析したら、入居者も納得の残酷な真実が見えた~

Pythonでのデータ収集・蓄積をやってみました。データ収集にはhsbox無料版を活用しています。集積したデータを解析していま求められている物件はどのようなものなのかを可視化して、ビジネスに活用しようという話です。

WebcI
Webクロール

上の図のデータ収集と分析環境は構築済みで運用に入りました。分析結果に関しては別の機会に書いてみようと思います。 ただ、地域によって傾向が異なると推測されます。分析したい地域のデータを収集して解析する必要があるので、真剣に参考にしたい方は実際にお試しください。構築方法等については支援いたします。 有名企業での分析実績がある現役プロの分析が欲しい方はお問い合わせください。データ収集から解析まで有償にて支援いたします。

Webクローリングだけでなく、データ構造の変更を自動検知してLineに通知する仕組みも追加しました。Line通知の仕組みは他にもいろいろ活用できそうです。 LineだけでなくE-mailや、hsbox特有のスマートスピーカーやスマートディスプレイへの通知もできます

Webクローリング+自動分析+通知など自由自裁にカスタマイズできるのでいろいろできそうですね。

-以下参考-

以下は、Grokが、こんな感じとして、書いてみた記事です。

2025年11月・小規模大家の本音分析

「場所選べない? それが現実。でも、空室ゼロの裏技はリノベと条件緩和で十分」
~Python + Grokで区別空室率を掘ったら、1棟保有者でも即満室の道が見えた~

前回の記事で「港区に築浅建てろ!」みたいな大口投資家目線で書いてすみませんでした。
ご指摘の通り、ほとんどの大家さんは1~3棟保有で、場所は運任せ
僕も都内2棟(中野区と江東区の築20年アパート)しか持ってない身として、痛いほどわかります。

今回はガチの小規模大家目線で分析。
場所固定の物件をどう磨けば、空室率を5%以内に抑えられるか。
データはSUUMO/LIFULL/アットホームの2025年11月時点をPythonでスクレイプ+Grok解析(約1,200件)。
入居者側が読んでも「これなら引っ越したい」と思える内容に仕上げました。

結論:場所固定の小規模大家が勝つための3本柱

対策カテゴリ具体策(投資額目安)期待効果(空室率低下)入居者目線納得ポイント
リノベーション水回り更新(50-100万円/室)+人気設備追加(オートロック/宅配ボックス/独立洗面台:20-50万円)15-20%低下(築20年超で顕著)「古いけど清潔感あって便利!」で即決。2025年、エアコンは「必須」超えて「当たり前」
募集条件緩和ペット可/ルームシェアOK/SOHO許可(手続き無料~5万円)10-15%低下(特に単身者需要エリア)「ペット連れOKならここ!」や「シェアで家賃半分」が刺さる。2025年ペットブーム継続中
運用改善管理会社変更+写真/動画リニューアル(無料~10万円)5-10%低下(即効性高)「写真で一目惚れ」する入居者多数。空室期間短縮で家賃収入安定

総投資100-150万円で、空室率を平均15%→5%以内に。回収期間1-2年(家賃1万円アップ想定)。
場所が中野や江東みたいな「まあまあエリア」でも、これで回転率2倍に。

実際のデータ分析(2025年11月19日・東京23区1K/1DK、15万円以下)

PythonでLIFULL/SUUMOから1,200件スクレイプ→Grokに「区別空室率推定+リノベ効果シミュ」投げました。
(空室率は掲載期間長さで推定:30日超=高リスク)

1. 区別空室率の実態(小規模大家の現実)

区(例: 中野/江東)平均空室率築20年超物件のリスクリノベ後家賃アップ幅
中野区12.5%+8%(設備なしで苦戦)+8,000円<
江東区10.7%+5%(再開発でチャンス)+10,000円<
港区(参考)19.3%-(高需要で余裕)+15,000円
葛飾区(コスパ区)15.2%+10%(狭小物件多)+6,000円
  • 中野区(僕の物件エリア):空室率12.5%。築20年で駅徒歩10分超だと20%超え。でも、水回りリノベで反響1.5倍< g ro k:render type=”render_inline_citation”>
    11
    。入居者は「中野の商店街便利!」が決め手。
  • 江東区:10.7%と低め。再開発(豊洲/有明)で上昇中。宅配ボックス追加でペット可物件が即埋まり< g ro k:render type=”render_inline_citation”>
    13
  • 全体傾向:2025年、家賃上昇4%(3LDKで40%超)なのに、空室率は9.6%平均< g ro k:render type=”render_inline_citation”>
    2
    。小規模大家は「差別化」で勝負。

2. リノベの費用対効果(築古物件限定分析)

Grokに「100万円投資でROI計算」させた結果:

  • 水回り(キッチン/浴室更新):投資50万円→家賃+5,000円、空室期間-10日。回収1年。
  • 設備追加(独立洗面+ネット無料):20万円→反響率+30%< g ro k:render type=”render_inline_citation”>
    9
    。入居者「洗面台ないとストレス!」が本音。
  • 省エネ改修(2025年法改正対応):断熱強化で光熱費補助金ゲット可能< g ro k:render type=”render_inline_citation”>
    14
    。カーボンニュートラルで家賃+2,000円上乗せ可。

築古アパートの出口戦略としても有効:リノベ後売却で+10-20%プレミアム< g ro k:render type=”render_inline_citation”>
17

3. 条件緩和の即効テク(投資ほぼゼロ)

  • ペット可:需要高(ブーム継続)、家賃+5-10%可能< g ro k:render type=”render_inline_citation”>
    13
    。リスク(修繕費)は保険でカバー。
  • ルームシェアOK:単身者増で空室埋まりやすい。江東区で効果大。
  • SOHO許可:リモート需要で家賃+3,000円。2025年トレンド「コミュニティ賃貸」< g ro k:render type=”render_inline_citation”>
    1

小規模大家が今すぐやるべきアクションプラン

  1. データ診断:自物件の空室率をGrokにCSV投げて分析(無料)。
  2. リノベ相談:空室対策特化会社に無料見積もり< g ro k:render type=”render_inline_citation”>
    11
    。ターゲット(単身/ファミリー)設定でカスタム。
  3. 運用スイッチ:管理会社変えて写真プロ級に(スマホアプリでOK)。
  4. 2025年問題対策:高齢者向けバリアフリー追加(補助金あり)< g ro k:render type=”render_inline_citation”>
    15
    。団塊世代後期高齢化で需要爆増。

まとめ:場所固定でも「入居者の心を掴めば勝ち」

小規模大家の8割が「場所が悪いから空室」と思い込んでるけど、データ見ると9割は運用ミス
リノベと緩和で、僕の江東区物件は空室ゼロ継続中。入居者も「古いけど住みやすい!」とリピート。

大家も入居者もハッピーなWin-Win。2025年は「変化の年」< g ro k:render type=”render_inline_citation”>
6
、今がチャンスです。

(次回:1棟保有者のための補助金活用術。江東区大家より)

データソース:LIFULL HOME’S 2025レポート + アットホーム市場分析 + SUUMOリアルタイムデータ

■コードのhsboxでの実装例

事前にPCで検証して、hsbox上に構築運用する手順で構築しています。
公開できる形に保存先NAS指定や、取得する地域は適当に書いています。 状況に応じて★印の箇所などを修正してください。
hsboxへのcron設定方法は、本家hsboxサイトで「hsboxで作る“LAN監視システム・アラート”」の記事の下のほうで公開されているので参考にしてください。

# crawl.py - SUUMO 賃貸情報クローラー (全ページ・部屋単位) 公開用
import requests
from bs4 import BeautifulSoup
from urllib.parse import urljoin
import time
import json
import pandas as pd
from datetime import date, datetime
import traceback
import csv
import os
import json
import hashlib
from pathlib import Path
import requests

BASE_URL = "https://suumo.jp/jj/chintai/ichiran/FR301FC001/"
PARAMS_TEMPLATE = {
"ar": "030", # 東京都 ★
"bs": "040", # 江東区 ★
"ra": "013",
"cb": "0.0",
"ct": "9999999",
"et": "9999999",
"cn": "9999999",
"mb": "0",
"mt": "9999999",
"shkr1": "03",
"shkr2": "03",
"shkr3": "03",
"shkr4": "03",
"fw2": "",
"ek": "009014660", # ★
"rn": "0090",
"srch_navi": "1",
"page": 1
}

#https://suumo.jp/jj/chintai/ichiran/FR301FC001/?ar=030&bs=040&ra=013&cb=0.0&ct=9999999&et=9999999&cn=9999999&mb=0&mt=9999999&shkr1=03&shkr2=03&shkr3=03&shkr4=03&fw2=&ek=009014660&rn=0090
#

HEADERS = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64)"
}

# ==================== IFTTT + LINE 通知設定(★書き換えてください)====================
IFTTT_EVENT_NAME = "<あなたのAppletのイベント名>" # あなたのAppletのイベント名
IFTTT_KEY = "<あなたのWebhookのキー>" # ← ここはあなたの本番キー
IFTTT_WEBHOOK_URL = f"https://maker.ifttt.com/trigger/{IFTTT_EVENT_NAME}/json/with/key/{IFTTT_KEY}"
# =========================================================================================



EV = "hsbox" # ★
#EV = "PC"
TEST=0 # テストモードは 1 運用は 0 ★
#######################################^ 切り替え用

if TEST != 1:
MAXC = 10000 #★要調整
else:
MAXC = 2 #テスト用
TC = 0 # 全件数
TODAY = date.today()
SER = datetime.now().strftime("%Y%m%d%H%M%S")

FINGERPRINT_FILE = "suumo_structure_fingerprint.json"


# 監視する重要セレクタ(これが1つでも変わったら即検知)
STRUCTURE_SELECTORS = {
# 一覧ページ(動的変動耐性強化)
"一覧ページ_物件カード数": "div.cassetteitem",
"一覧ページ_物件タイトル": "div.cassetteitem_content-title, h2.cassetteitem_content-title",
"一覧ページ_詳細リンク": "div.cassetteitem a.js-cassette_link_href", # ← 親div限定で広告除外

# 詳細ページ(安定)
"詳細ページ_物件名": "h1.property_view_title",
"詳細ページ_メイン表": ".property_view_table th",
"詳細ページ_概要表": "table.data_table.table_gaiyou",
"詳細ページ_特徴リスト": "#bkdt-option ul.inline_list li",
}



def ifttt_line_notify(changes_list=None, page_type="不明", extra=""):
"""
SUUMO構造変化をIFTTT経由で即LINE通知(JSON形式)
changes_list : 変化内容の文字列リスト(例: ["物件カード数 20→8", "物件名セレクタ消失"])
"""
if changes_list is None:
changes_list = ["(詳細不明の変化を検知)"]

# value2 に改行で最大5行まで入れる(LINEで見やすい)
changes_text = "\n".join(changes_list[:5])
if len(changes_list) > 5:
changes_text += f"\n…他 {len(changes_list)-5} 件"

payload = {
"value1": "【SUUMO構造変化検知!!】",
"value2": f"{changes_text}\n\nページ種別: {page_type}\n{extra}",
"value3": datetime.now().strftime("%Y/%m/%d %H:%M:%S")
}

try:
response = requests.post(
IFTTT_WEBHOOK_URL,
headers={"Content-Type": "application/json"},
json=payload,
timeout=10
)
if response.status_code == 200:
print("LINE通知成功!")
else:
print(f"IFTTT通知失敗: {response.status_code} {response.text}")
except Exception as e:
print(f"IFTTT通知エラー: {e}")


def calculate_fingerprint(soup, page_type):
"""soupとページ種別からフィンガープリント生成(構造重視版・偽陽性防止)"""
fp = {"page_type": page_type, "date": datetime.now().isoformat()}
for name, selector in STRUCTURE_SELECTORS.items():
elements = soup.select(selector)
count = len(elements)
first_struct_hash = "" # 構造ハッシュ(タグ+クラス名のみ、テキスト無視)
if elements:
first_el = elements[0]
struct_info = f"{first_el.name}:{' '.join(first_el.get('class', []))}" # 例: "h1:property_view_title"
first_struct_hash = hashlib.md5(struct_info.encode('utf-8')).hexdigest()
fp[name] = {"count": count, "first_struct_hash": first_struct_hash} # キー名を統一
return fp

def detect_structure_change(current_fp):
"""最終版:countは無視、構造ハッシュ(タグ+クラス)のみで判定"""
page_type = current_fp.get("page_type", "unknown")
filename = f"suumo_structure_fingerprint_{page_type}_tokyo.json"
path = Path(filename)

previous_fp = {}
if path.exists():
try:
previous_fp = json.loads(path.read_text(encoding="utf-8"))
except:
print(f"[{page_type}] フィンガープリント破損→リセット")
path.unlink()

if not previous_fp:
path.write_text(json.dumps(current_fp, ensure_ascii=False, indent=2), encoding="utf-8")
print(f"[{page_type}] 初回登録完了(構造ハッシュ保存)")
return False

changes = []
for key, current_val in current_fp.items():
if key in ("date", "page_type"):
continue

prev_hash = previous_fp.get(key, {}).get("first_struct_hash", "")
curr_hash = current_val.get("first_struct_hash", "")

# 構造ハッシュが違う=タグ or クラスが変わった → 本物の構造変化
if curr_hash != prev_hash and curr_hash and prev_hash:
changes.append(f"【真の構造変化】 {key}\n タグ/クラスが変わりました!")

if changes:
ifttt_line_notify(changes, page_type=page_type, extra="要セレクタ修正")
print(f"[{page_type}] " + "\n".join(changes))
# 新しい構造を保存(次回から適応)
path.write_text(json.dumps(current_fp, ensure_ascii=False, indent=2), encoding="utf-8")
raise SystemExit(f"[{page_type}] 本物の構造変化検知 → 停止")
else:
# 正常なら最新構造を上書き保存(徐々に最新化)
path.write_text(json.dumps(current_fp, ensure_ascii=False, indent=2), encoding="utf-8")
print(f"[{page_type}] 構造正常(広告変動は無視)→ 継続OK")
return False


def get_soup(url):
res = requests.get(url, headers=HEADERS)
res.raise_for_status()
return BeautifulSoup(res.text, "html.parser")

def parse_property_detail(url, check_structure=True): # パラメータ追加
"""物件詳細ページから情報を取得"""
soup = get_soup(url)
if check_structure:
fp_detail = calculate_fingerprint(soup, "detail")
detect_structure_change(fp_detail)
data = {}

# 物件名
title_tag = soup.select_one("h1.property_view_title")
data["物件名"] = title_tag.get_text(strip=True) if title_tag else ""

for th in soup.select(".property_view_table th"):
label = th.get_text(strip=True)
td = th.find_next_sibling("td")
if not td:
continue
value = td.get_text(strip=True)
if "賃料" in label:
data["賃料"] = value
elif "間取り" in label:
data["間取り"] = value
elif "面積" in label:
data["面積"] = value
elif "住所" in label:
data["住所"] = value
else:
# その他の詳細情報も取得
data[label] = value
uls = soup.select("#bkdt-option ul.inline_list")
for ul in uls:
for li in ul.find_all("li"):
lis = li.get_text()
data["部屋の特徴・設備"] = lis
table = soup.select_one("table.data_table.table_gaiyou")
results = []
for tr in table.select("tr"):
ths = tr.find_all("th")
tds = tr.find_all("td")

# th と td の数が合わない場合がある(colspan 特殊ケース)
# → そのまま zip せず、柔軟に処理する
td_index = 0
for th in ths:
th_text = th.get_text(strip=True)

if td_index < len(tds):
td = tds[td_index]

# td の中に ul > li があるケース
if td.select("ul li"):
td_value = "、".join(li.get_text(strip=True) for li in td.select("ul li"))
else:
td_value = td.get_text(strip=True)

data[th_text] = td_value
td_index += 1

for th in soup.select(".data_01 th"):
label = th.get_text(strip=True)
td = th.find_next_sibling("td")
if not td:
continue
print(f"{th} {td}\n")
print(td)
value = td.get_text(strip=True)
if "賃料" in label:
data["賃料"] = value
elif "間取り" in label:
data["間取り"] = value
elif "面積" in label:
data["面積"] = value
elif "住所" in label:
data["住所"] = value
else:
data[label] = value

required_keys = ["所在地", "駅徒歩", "間取り", "築年数", "向き","専有面積","建物種別","部屋の特徴・設備"]
missing_count = sum(1 for k in required_keys if not data.get(k))

if missing_count >= 2:
error_msg = f"【詳細ページ解析異常】\nURL: {url}\n欠損項目: {[k for k in required_keys if not data.get(k)]}"
ifttt_line_notify([error_msg], page_type="詳細ページ", extra="必須項目欠損")

return data



def fetch_page(page_num):
params = PARAMS_TEMPLATE.copy()
params["page"] = page_num
print(f"--- ページ {page_num} 取得 ---")
r = requests.get(BASE_URL, params=params, headers=HEADERS)
if r.status_code != 200:
print(f"ページ取得失敗: {r.status_code}")
return None
return BeautifulSoup(r.text, "html.parser")

def parse_cassetteitems(soup):
cassette_items = soup.select("div.cassetteitem")
properties = []
global TC, MAXC, EV, TEST

first_room = True # 1物件目だけ詳細ページの構造チェック

for item in cassette_items:
if TC > MAXC:
break

# タイトル
title_tag = item.select_one("div.cassetteitem_content-title, h2.cassetteitem_content-title")
title = title_tag.get_text(strip=True) if title_tag else "N/A"

type_tag = item.select_one("div.cassetteitem_content-label span")
prop_type = type_tag.get_text(strip=True) if type_tag else "N/A"

address_tag = item.select_one("ul.cassetteitem_detail li.cassetteitem_detail-col1")
address = address_tag.get_text(strip=True) if address_tag else "N/A"

detailc3_tag = item.select_one("ul.cassetteitem_detail li.cassetteitem_detail-col3")
year = detailc3_tag.select_one("div:nth-of-type(1)").get_text(strip=True) if detailc3_tag else "N/A"
kaisuu = detailc3_tag.select_one("div:nth-of-type(2)").get_text(strip=True) if detailc3_tag else "N/A"

# 部屋ごとのループ
room_rows = item.select("table.cassetteitem_other tr")
for row in room_rows:
cells = row.select("td")
if not cells:
continue

# ここから全部定義しないとNameErrorになる部分
price_td = cells[3]
rent = price_td.select_one("li:nth-of-type(1) span.cassetteitem_price--rent")
rent = rent.get_text(strip=True) if rent else "N/A"

admin_el = price_td.select_one("li:nth-of-type(2) span.cassetteitem_price--administration")
admin = admin_el.get_text(strip=True) if admin_el else "N/A"

price2_td = cells[4]
sikik = price2_td.select_one("li:nth-of-type(1) span.cassetteitem_price--deposit")
sikik = sikik.get_text(strip=True) if sikik else "N/A"

reiki_el = price2_td.select_one("li:nth-of-type(2) span.cassetteitem_price--gratuity")
reiki = reiki_el.get_text(strip=True) if reiki_el else "N/A"

madri0_td = cells[5]
madori = madri0_td.select_one("li:nth-of-type(1) span.cassetteitem_madori")
madori = madori.get_text(strip=True) if madori else "N/A"

menseki_el = madri0_td.select_one("li:nth-of-type(2) span.cassetteitem_menseki")
menseki = menseki_el.get_text(strip=True) if menseki_el else "N/A"

# 階数(cells[2]は階数と面積が一緒に入っていることが多い)
area = cells[2].get_text(strip=True) if len(cells) > 2 else "N/A"

# 詳細リンク
syosai_u = cells[8]
a_tag = syosai_u.select_one("a.js-cassette_link_href")
href = a_tag.get("href") if a_tag else ""
url = urljoin("https://suumo.jp", href)

# 詳細ページ取得(1物件目だけ構造チェック)
try:
data = parse_property_detail(url, check_structure=first_room)
first_room = False
time.sleep(1)
print(f"物件取得成功: {url}")
except Exception as e:
print(f"物件取得失敗: {url}\n{e}\n")
traceback.print_exc()
data = {}

TC += 1
if TC > MAXC:
break

properties.append({
"today": TODAY,
"tc": TC,
"title": title,
"type": prop_type,
"address": address,
"rent": rent,
"admin": admin,
"sikik": sikik,
"reiki": reiki,
"madori": madori,
"menseki": menseki,
"area": area,
"year": year,
"kaisuu": kaisuu,
"data": data,
"url": url
})

return properties

def save_properties_to_csv(properties, filename="properties.csv"):

# CSV の列定義(あなたの出力形式に完全一致)
fieldnames = [
"today", "tc", "title", "type", "address", "rent",
"admin", "sikik", "reiki", "madori", "menseki",
"area", "year", "kaisuu", "url", "data"
]

# UTF-8 BOM あり(Excel で文字化けしない)
with open(filename, "w", newline="", encoding="utf-8-sig") as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)

writer.writeheader()

for p in properties:
# data(辞書)を JSON 文字列化して保存
data_json = str(p["data"])

writer.writerow({
"today": p.get("today", ""),
"tc": p.get("tc", ""),
"title": p.get("title", ""),
"type": p.get("type", ""),
"address": p.get("address", ""),
"rent": p.get("rent", ""),
"admin": p.get("admin", ""),
"sikik": p.get("sikik", ""),
"reiki": p.get("reiki", ""),
"madori": p.get("madori", ""),
"menseki": p.get("menseki", ""),
"area": p.get("area", ""),
"year": p.get("year", ""),
"kaisuu": p.get("kaisuu", ""),
"url": p.get("url", ""),
"data": data_json,
})

print(f"CSV 出力完了: {filename}")

def build_parquet_filename(prefix="df", ext="parquet"):
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
return f"{prefix}_{timestamp}.{ext}"


def properties_to_parquet(properties, parquet_file):

# data は dict → JSON 文字列化
rows = []
for p in properties:
row = p.copy()
row["data"] = json.dumps(p.get("data", {}), ensure_ascii=False)
rows.append(row)

df = pd.DataFrame(rows)

df.to_parquet(
parquet_file,
index=False,
engine="pyarrow",
compression="snappy"
)

print(f"Saved → {parquet_file}")


def main():
all_properties = []
page_num = 1

while True:
soup = fetch_page(page_num)
if soup is None:
break

cassette_count = len(soup.select("div.cassetteitem"))
if page_num == 1 and cassette_count < 10: # 1ページ目で極端に少ない
ifttt_line_notify([f"【SUUMO異常】1ページ目の物件カード数が{cassette_count}件です。レイアウト変更?"], page_type="list", extra="")

fp_list = calculate_fingerprint(soup, "list") #構造変化検出用
detect_structure_change(fp_list)

properties = parse_cassetteitems(soup)
if not properties:
print("物件が存在しないため終了します。")
break

print(f"このページの物件数: {len(properties)}")
all_properties.extend(properties)
page_num += 1

print(f"\n抽出された物件総数: {len(all_properties)}\n")
if EV != "hsbox":
base = r"\\192.168.**\share" # ★
filename = build_parquet_filename()
parquet_filep = f"{base}\\{filename}"
else:
base = r"/mnt/nas/share" # ★
filename = build_parquet_filename()
parquet_filep = f"{base}/{filename}"
if TEST != 0: #テスト用
parquet_filep = "test.parquet"

properties_to_parquet(all_properties, parquet_filep)



if __name__ == "__main__":
main()

補足

マウントポイントへのマウントは  /etc/fstabへの設定や 、 mount コマンドなど、環境に合わせて実施してください。※hsBox1.3では、仕様上 /etc/fstabの設定は使用できません。 cron設定で、起動後にマウントするように設定してください。

詐欺メール 、新たなストーリーベース詐欺の前振り? 2005年ころからおなじみのストーリー調スパムの最新版か spam-mail

この記事は、スパムアサシンやメーラーでのスパム判定をすり抜けた怪しいメールを取り扱います。その内容の判定や設定方法の改善策について取り扱います。

このメールはdmarcポリシーのチェックを”pass”しています。 このパターンはドメイン自体を自動的にbanする(ブラックリスト登録する)のが良いかもしれませんが、様子見です。 スパマーによるハニーポット探索が目的なのかもしれません。  

★対象のメールのコピー

Apple Store 20,000円ギフトカードを今すぐ受け取る

Apple Store 5,000円 gift card 贈呈中 @media only screen and (max-width:600px){ .container{width:100% !important;} .btn{display:block !important; width:100% !important;} } 【Apple Store】20,000円 gift card 贈呈中 特定アカウント限定/24時間以内に受け取り

いつもAppleをご利用いただきありがとうございます。現在、特定のアカウントを対象に20,000円分のApple gift cardを贈呈しております。

本gift cardは24時間以内に 受け取り いただいた場合のみ有効です。期限内に受け取りが完了しない場合、権利は自動的に失効いたします。

20,000円を受け取る ▼

ご利用条件対象:本メールを受信した特定アカウントに限ります。 受け取り期限:本メール受信から24時間以内。 利用範囲:Apple Storeおよびオンラインストア内の特定商品に限りご利用いただけます。 他の割引・クーポンとの併用はできない場合があります。
本メールは送信専用です。ご返信いただいても対応いたしかねます。
誤送信と思われる場合は、このメールの破棄をお願いいたします。
© 2025 Apple. All rights reserved.
spam22
spam
過去(2024年以前)実施の迷惑メール対策方法、設定

スパムアサシンの設定と、メーラーでの設定については、要望があれば記事を用意いたしま。コメントとをお願いします。

スパムメール/詐欺メール DMARC設定で激減、2025年以降この設定は必須!?

この記事は、スパムメールや詐欺メールに関する情報を扱います。過去に何度かスパム対策を行ってきましたが、徐々に増えてきているので対策を見直しました。Eメールはいろいろなセキュリティレベルの相手と通信する仕掛けなので完璧な対策はないと言ってもよいかもしれません。 そうはいっても明らかにスパムと判断できるものも保留してスパムかどうかを判断していくのは面倒である。 明確にスパムと判断できるものは受け取らないようにしたのでよいだろう。 というのも、最近、送信元が自分であるスパムメールが増えていた。明らかに自分が送信していないのでスパムであることは明白なので、なぜこのような送り方をするのか疑問だが、チェックルールをかいくぐる手として使っているのだろう。

このようなメールは完全に受け入れなければよい。 これを実現するのがDMARCである。DMARCは、「自分のドメインを使ったなりすましメールを見つけ、受信側で拒否・隔離できるようにする」仕組みである。そこで、DMARCポリシーを「メールを配送しない」に設定した。

この設定により、最近増えていた下のような送信元が”自分”だと詐称されたメールを撲滅できた。 素晴らしい!   激減とはいうものの、 スパムメールの全体の一部であることには変わりない。引き続きスパムとの闘いは続く。

DMARC 設定で拒否できるようになったスパムメール例(サンプル)

★対象のメールのコピー

[SPAM] 新作登場!今だけの特別オファーをご覧ください


[SPAM] 【期間限定セール】LOUIS VUITTON 人気商品が最大70%OFF! ***


 本日新商品アップしました、全商品80% OFF,送料無料,代引きで支払う,代金引換。
是非、宜しくお願い致します。

[ONLY 1]LOUIS VUITTON モンスリ PM Ref:M45410 <https://superfluity.qpon/357>

[ONLY 1]LOUIS VUITTON モンスリ PM Ref:M45410 <https://superfluity.qpon/357>
17,000 JPY 359,700 JPY


【Louis Vuitton】クロスボディ ショルダー バックパック M82769 <https://
superfluity.qpon/358>

【Louis Vuitton】クロスボディ ショルダー バックパック M82769 <https://
superfluity.qpon/358>
30,000 JPY 178,000 JPY


Louis Vuitton ルイヴィトン ボディバッグ ウェストバッグ 長財布 2点セット お得
<https://superfluity.qpon/359>

Louis Vuitton ルイヴィトン ボディバッグ ウェストバッグ 長財布 2点セット お得
<https://superfluity.qpon/359>
30,000 JPY 168,000 JPY

【存在感抜群☆国内発】LV ディスカバリー・バックパック PM M46802 <https://
superfluity.qpon/360>

【存在感抜群☆国内発】LV ディスカバリー・バックパック PM M46802 <https://
superfluity.qpon/360>
24,000 JPY 168,000 JPY


【ルイヴィトン】NEW!シャドーブラック☆スリムバッグDANUBE <https://
superfluity.qpon/361>

【ルイヴィトン】NEW!シャドーブラック☆スリムバッグDANUBE <https://
superfluity.qpon/361>
23,000 JPY
*dmarcで破棄できた例



【信用金庫】ポイント加算の確認をお願い申し上げます


お客様へ

平素より全国信用金庫協会をご利用いただき、誠にありがとうございます。


■ ポイント加算のお知らせ

2025年10月1日〜2025年10月31日までのご利用分について、下記内容で全国信用金庫協会
ポイントが加算されましたのでお知らせ申し上げます。

*■ 加算内容*

* *対象期間:*2025年10月1日〜2025年10月31日
* *加算ポイント数:*5130ポイント(5130円相当)
* *加算日:*2025年11月18日
* *加算対象取引:*給与の受け取り、公共料金の自動引落し、キャッシュレス決済の利用


■ 受取期限について

加算されたポイントの受取期限は **2025年11月17日** までです。期限を過ぎると、ポイ
ントは失効いたしますので、**お早めにご確認いただき、手続きをお願いいたします**。


■ ポイント受け取り手続き

下記リンクより、ポイント受け取り手続きを速やかに行っていただけます。

▶ ポイントを受け取る <https://yagwg.com/shinkin/s/selectState>

--------------------------------------------------------------------------------

*【ご注意】*
インターネットバンキングは毎週日曜日23:56〜月曜日6:00にメンテナンスが行われま
す。この時間帯はサービスをご利用いただけませんので、予めご了承くださいますようお
願い申し上げます。

--------------------------------------------------------------------------------

【お問い合わせ】
全国信用金庫協会 カスタマーサポート
電話:0120-579-835(携帯・IP電話:03-6387-3213)
受付時間:平日 9:00〜16:00

全国信用金庫協会株式会社
〒103-0028 東京都中央区八重洲1丁目3番7号
© 全国信用金庫協会 All Rights Reserved.

==============================================
■判定結果

ARC-Authentication-Results: i=1;
***.xserver.jp;
dkim=fail ("body hash did not verify") header.d=mail20.funcwei.com header.s=mail20 header.b="T2j/oEP0";
spf=pass (sv8645.xserver.jp: domain of info@mail20.funcwei.com designates 35.185.141.217 as permitted sender) smtp.mailfrom=info@mail20.funcwei.com;
dmarc=fail reason="SPF not aligned (relaxed)" header.from=hama-sushi.co.jp (policy=none)

■最初の数件 Spamフィルタに引っ掛からなかったものもdmarchafail
dmarc=fail reason="No valid SPF, No valid DKIM" header.from=uccard.co.jp (policy=none)


4:19---------------------v対象メール
【重要なお知らせ】UCカードご利用確認のお願い

最近行われましたプライバシ-ボリシ-の改定に伴いまして、こ確認のお手続きは、一回限りで、数分で終了致します。
お客様によるご確認行為は必須となっており、お客様のアカウント情報のご確認が行われなかった場合は、アカウントが停止される可能性がごさいます。
この確認は義務付けられており、確認していただけない埸合は、アカウントが停止される場合もあります。
お客様にはご迷惑、ご心配をお掛けし、誠に申し訳ございません。
何卒ご理解いただきたくお願い申しあげます。
ご利用確認はこちら
※この確認は義務付けられており、確認してい ただけない埸合は、アカウントが停止される場合もあります。つきましては、以下ヘアクセスの上、カードのご利用確認にご協力をお願い致します。
お客様にはご迷惑、ご心配をお掛けし、誠に申し訳ございません。
何卒ご理解いただきたくお願い申しあげます。
※24時間以内にご確認がない場合、誠に申し訳ございません、お客様の安全の為、アカウントの利用制限をさせていただきますので、予めご了承ください。
=======================
アットユーネット利用規約
第1条(利用規約)
1.本規約は、ユーシーカード株式会社(以下「UC社」と称します。)またはUC社と業務提携するカード会社(以下これらをあわせて「当社」と称します。)にユーシーカードホームページ上で提供するインターネットサービス「アットユーネット」(以下「本サービス」と称します。)のユーザー登録申請を行い、当社が承認した方(以下「アットユーネット会員」と称します。)に適用されます。
2.アットユーネット会員は、本規約のほか、第2条第1項に定めるカードの「会員規約」及び本サービスにおける各「サービス規約」、「ご案内」、「ご利用上の注意」その他の注記事項(以下「本規約等」と称します。)を遵守するものとします。
https://atunet.uccard.co.jp/UCPc/pages/images/person/PC/terms/index.html
第2条(ユーザ登録)
1.本サービスのユーザ登録を申請できる方は、当社が発行するUCブランドのクレジットカードのうち当社が認めたクレジットカード個人会員及びコーポレートカードのカード使用者とします。(以下これらのクレジットカードを総称して、「カード」とします。)
2.ユーザ登録を希望する方(以下「申込者」と称します。)は、当社所定の方法により申請するものとします。
https://www2.uccard.co.jp/cs/services/#entertainment
3.当社は、申込者のうちユーザ登録を承認した方に対し、アットユーネット会員を特定する番号(以下「ID」と称します。)を付与し、登録されたEメールアドレスに通知します。
https://www2.uccard.co.jp/cs/card/lineup/mileageplus.html
4.UC社と業務提携するカード会社の申込者は、申込者の所属するカード会社(以下「所属カード会社」と称します。)がUC社にユーザ登録に関する受付のほか、本サービスに関する事務等について、業務委託することに同意するものとします。
https://www2.uccard.co.jp/cs/privacy/member.html
第3条(登録の拒絶及び承認の取消)
当社は、申込者が以下の何れかの項目に該当する場合、当該申込者の本サービスの利用を拒絶し、あるいは、承認後であってもその取り消しができるものとします。
1.ユーザ登録をした方が、カードの会員資格又はコーポレートカードのカード使用者資格を有していない場合
2.ユーザ登録をした時点で、カードご利用状況、お支払状況等が不適当な場合
3.ユーザ登録の際の申告事項に、虚偽の記載、誤記、又は記入漏れがあった場合
4.当社に予め登録されている情報について改めて確認が必要な場合
5.カード不正使用による被害発生時や、申込者が当社に届け出た氏名、勤務先、住所、お支払口座等に変更があり、直ちに当社所定の届出用紙により手続きを行わなかった場合など正確な本サービスの提供が困難と予測される場合
6.その他、会員規約違反などがあり、当社がアットユーネット会員として不適当と判断した場合
https://www2.uccard.co.jp/maintenance/index.html
第4条(再登録)
アットユーネット会員は、次のいずれかに該当する場合、当社所定の届出を行うものとします。
なお、届出がないことによりアットユーネット会員ならびに第三者に不利益や損害が発生した場合には当社はその責任を負わないものとします。
(1)カード番号切替等申請した登録内容に変更があった場合
(2)自己のID及びパスワードが第三者に無断使用されている、又はそのおそれがあることが判明した場合
https://www2.uccard.co.jp/uc/uccard/corporatecard/
第5条(本人認証)
1.当社は、入力されたID及びパスワードの一致を確認することによって、アットユーネット会員による本サービスの利用とみなします。なお、当社は、本サービスの提供において、本人認証のためにその他の手続きを求める場合があります。
2.アットユーネット会員は、本人認証手続きに対応したオンライン加盟店においては、パスワードまたは当社が発行するワンタイムパスワードを入力する方法により、ショッピングサービスを利用できるものとします。
https://www2.uccard.co.jp/uc/services/seikyu/
業務委託先 株式会社クレディセゾン
Copyright © UC CARD CO., LTD. All Rights Reserved.

関連記事

https://www.nri-secure.co.jp/blog/dmarc-report

https://mic.or.jp/info/2025/11/16/mail-2


過去(2024年以前)実施の迷惑メール対策方法、設定

スパムアサシンの設定と、メーラーでの設定については、要望があれば記事を用意いたします。コメントとをお願いします。

ソーラーフロンティア ホームエネルギーモニタリングサービス終了! 2025年12月solar発電データ監視がストップ?の代替で継続を検討

ソーラーフロンティア ホームエネルギーモニタリングサービスが2025年12月に終了!hsboxでsolar発電データ監視を代替を検討

過去の関連記事

はじめに

次のようにフロンティアモニターのシステム終了のアナウンスがきています。
hsBoxを使って代替機能を実装していきましょう。

**** 様

日頃より【フロンティアモニター】ホームエネルギーモニタリングサービスをご利用いただき、誠にありがとうございます。

【システム終了のお知らせ】
2025年12月22日(月)をもって本計測装置のサービスを終了いたします。
なお、システムの都合により、一部サービス終了のタイミングについては前後する可能性がございますので、ご承知おきください。
詳しくはお客様ご利用サイトのお知らせ欄をご覧ください。

本メール発信は、メールシステムメンテナンスにより、1日遅延する場合があります。メンテナンスの日程は、お客様ログイン画面の「お知らせ」欄に随時記載いたします。
メンテナンス時はご不便をおかけしますが、何卒ご承知おきくださいますようお願いいたします。

下記の通り、2025年11月07日の発電量をお知らせいたします。

発電量:37.44kWh


今後ともフロンティアモニターをよろしくお願いいたします。
★なお、お心当たりのない方は、お手数ではございますが、下記メールアドレスまでご連絡頂きますようお願いいたします。
★このメールは送信専用メールアドレスから配信しています。このまま返信いただいてもお答えできませんのでご了承ください。
-----------------------------------------------
ソーラーフロンティア株式会社
【フロンティアモニター】お客様サービスセンター
電話:0570-053115(受付時間:9:00-17:00)※日曜、祝祭日、メーデー、年末年始を除く
メール:information@solar-frontier.com
-----------------------------------------------

順次、実装を進めていきます。 参考してみてください。 コメントなどあればお願いします。

まずは、次の情報を集めます

●パワーコンディショナー(メーカーと型番)
●フロンティアモニターの接続方式

次の図ような方式で、データ収集できそうな目途が立ちました。
※最初PROXY方式で検討しましたが、途中で直接採取する方式に変更してデータ取得できるようになりました。

順番に構築・検証していきます。以下に一部公開済みです。

hsBoxにproxyを構築 [公開済み]
hsBoxのproxyでデータ収集を検証[公開済み]
proxyで実データ収集に調整 pruxy方式は放棄、諦めて別方式へ[公開済み]
・hsBoxで、直接発電電力データの取得に成功!![公開済み]
・hsBoxで収集してデータを蓄積[公開済み、取得と同時にNASへ蓄積]
・hsBoxで取得したデータの妥当性を比較検証[公開済み]
・集積したデータでグラフを書かせてみた[公開済み]
・発電量通知メールを置き換え LINEで通知[公開済み]
・異常検知を検知して、メール、LINEで通知 [公開済み]

この後の作業予定です。[近日追加公開予定]
・蓄積したデータのhsBoxでTVやスマートディスプレイに表示

関連記事